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Abstract

The aim of this paper is to present the basic theory and preliminary applications of a newly developed
formulation for the modal analysis of two-dimensional vibrating structures. This is based on the statistical
processing of the data extracted from holographic shots of the vibrating object. Specifically, the elastic
displacement field is obtained through digital processing of two series of holographic shots (generated by
laser beams in quadrature), and then the Karhunen–Loève decomposition (KLD) technique is used to
extract, from the data, base functions that are optimal in the sense of maximum content of energy (as
understood in signal theory). The coupling of these two well-assessed techniques represents the main
novelty of the present work and yields an experimental methodology characterized by several interesting
features. First, the use of holographic images as data source provides a non-invasive technique that allows
for an accurate analysis of certain phenomena (such as aeroelastic and acoustoelastic problems) for which
instrumentation of the experimental models represents a critical issue. Also, it yields simultaneous three-
dimensional information on the whole object domain. Moreover, the KLD provides empirical base
functions which coincide, in theory, with the fundamental modes of vibration and requires a relatively
inexpensive experimental rig to capture high-frequency modes; these in turn are related to the resolution of
the digitized holographic shot, and not to the time-sampling rate. In the present work, the optical
holographic process is simulated through a dedicated, in-house developed, computer program. The
displacement field has been evaluated analytically for simple two-dimensional structures, such as thin
homogeneous rectangular plates and membranes. Preliminary numerical results reveal that the KLD base
functions obtained with the numerical simulation coincide, within plotting accuracy, with the exact
eigenmodes of the structure. In the simulation of the process, attention is paid to the treatment of the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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measurement noise, always present in real acquisitions. It is shown that the statistical nature of the KLD
ensures that the results are not affected by uncorrelated noise with spacially uniform amplitude, even for a
very poor signal-to-noise ratio.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the present work, a newly developed, non-invasive and accurate method for modal
identification in the dynamics of two-dimensional vibrating structures is presented. The method is
based on the coupling between digital holography and Karhunen–Loève theory. The data
extracted from a set of holographic shots of the vibrating structure are processed according to
Karhunen–Loève decomposition (KLD) in order to obtain the modal shapes. Indeed, the
coupling of these two techniques, which represents the main novelty of the present work, provides
an experimental methodology characterized by very attractive features discussed below. The
emphasis is on the use of the KLD to extract the natural modes of vibration and on the
advantages of using holographic images as empirical data source.
The KLD is a statistical method for finding a base that covers the optimal distribution of energy

in the dynamics of a continuum. This method initially appeared in the signal processing literature,
where it was presented by Hotelling [1] in 1933 as the principal component analysis (PCA). The
theory behind the method was taken again and studied in depth by Kosambi [2] in 1943, Loève [3] in
1945 and Karhunen [4] in 1946. Since it was applied by Lumley [5] in 1967 to uncover coherent
structures in turbulent flows, it has become a standard tool in turbulence studies [6], where it is also
known as the proper orthogonal decomposition (POD). More recently, the theory proposed by
Karhunen and Loève caught the attention of the structural dynamicists and it is now emerging as a
powerful tool also in structural dynamics and vibration. A physical interpretation of the use of the
KLD in vibrations studies has been shown by Feeny and Kappagantu [7], Feeny [8,9], Kerschen and
Golinval [10] and Wolter et al. [11] and Wolter and Sampaio [12].
The method consists in constructing a time-averaged spatial autocorrelation tensor from the

elastic displacement field of the structure. Its spectral analysis produces a basis, as a set of
orthonormal eigenfunctions (eigenvectors, in the numerical approach) and the corresponding set
of eigenvalues, which represent the energy content of each mode. A very appealing property of the
KLD is represented by its optimality: for a given truncation order n, the projection of the data set
on the first n eigenfunctions produced by the expansion ‘‘captures’’ more energy, on average, than
a projection on the first n functions of any other orthonormal basis. Therefore, the basis given by
the KLD is optimal in the sense of maximum energy content [6].
In the present work, the KLD is applied to identify the modal shapes of two-dimensional

structures. It is shown that for an undamped and unforced two-dimensional structure with
constant mass per unit area, the decomposition gives the eigenfunctions of the structural operator.
In the numerical applications presented at the end of the present work, attention is paid to the

treatment of the experimental noise, always present in actual data acquisitions. It will be shown
how the KLD acts as a filter for uncorrelated noise with spacially uniform amplitude, even for
very poor signal-to-noise ratios. It is worth noting that the statistical nature of the
Karhunen–Loève technique yields an additional feature, very attractive from the experimental
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point of view: the capability to capture high-frequency modes depends on the resolution of the
digitized holograms, and not on the time sampling rate. This is essentially due to the time-
averaging of the autocorrelation tensor, and makes this method particularly suitable for coupling
to optical data acquisitions, resulting in an experimental setup much less expensive than those
currently used.
Holographic interferometry is an extension of interferometric measurement techniques and it

may be used to generate a spatial image of objects deflection. Holographic techniques have shown
their capability to give accurate measurements of displacement vectors of a structure and, among
the traditional interferometric methods, they have a major advantage: holography permits storing
a wavefront for reconstruction at later time (see Section 3). Holographic methods have been
successfully applied by Erf [13] in non-destructive testing since 1974 and they are now used
wherever deformations and changes in shape of objects have to be evaluated with interferometric
accuracy. Furthermore, holographic interferometry has been found very useful in other area of
applications such as aerodynamics, heat transfer, medical and dental research [14]. For the
objective of vibrational analysis of elastic structures, the use of holographic images as a data
source has two major advantages: (i) the optical data acquisition is a non-invasive technique
which drastically reduce the errors due to the instrumentation; (ii) the data acquisition covers the
whole object domain so that it is possible to store information for a large number of points.
The technique can detect both out- and in-plane deformations of surfaces and has been widely

applied to study static loading problems (e.g., Refs. [15,16]). Its use in vibration problems has
been successfully used in the past years to observe single-frequency motion (e.g., Ref. [17]). In the
present work, a method to measure out-of-plane displacements of a two-dimensional structure is
presented. The present technique may be used to observe arbitrary time-dependent phenomena
and it has been here used to study a multi-frequency motion.
The recent growth of digital technologies has permitted the use of digital devices in holography,

so that the optical field intensity can be stored in a CCD array and read out by a computer system.
In this paper, the use of high-resolution and high-speed digital devices in holographic
measurements of displacement field of a structure is shown. Nevertheless, as already mentioned,
the use of the KLD makes it possible to use low speed recording devices, even for the analysis of
high-frequency motions, with a significant reduction of the effort required.
In Section 2, the general theory underlying the KLD is briefly presented, with emphasis on its

application to quasi-periodic dynamical systems. The relationship existing between the empirical
base functions and the fundamental modes of vibration of the structure is addressed as well.
Section 3 deals with the use of holographic interferometry for the evaluation of the elastic
displacements of vibrating two-dimensional objects, whereas in Section 4 preliminary numerical
results are presented, by means of a computer simulation of the vibratory phenomenon and its
optical acquisition. In Section 5, attention is paid to the simulation of the experimental noise, in
order to investigate the impact on the eigenfunctions extracted, for various signal-to-noise ratios.
2. Karhunen–Loève decomposition

The aim of the methodology introduced by Karhunen and Loève is to provide an optimal basis
for the representation of an ensemble of (scalar) fields wðxÞ. In our case, x 2S, being S the
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surface of a two-dimensional structure. The KLD basis is given by those functions j which
maximize, on average, the square-scalar-product of w onto j, suitably normalized (for details, see
Ref. [6]). This condition implies that, for a given truncation order n, the first n KLD base
functions capture, on average, more energy than any other orthonormal basis (a complete proof
of this property is given in Ref. [6]). It may be shown that the optimal base functions are the
solution of the integral equation

LRjðxÞ:¼
Z
S

Rðx; yÞjðyÞdy ¼ ljðxÞ, (1)

where for real scalar fields, Rðx; yÞ ¼ hwðxÞwðyÞi is the time-averaged autocorrelation function (h�i
is the time-averaging operator). In other words, the KLD basis is formed by the eigensolutions of
LR, and the field w may be decomposed in the linear combination. It may be shown that the
operator LR is selfadjoint and compact (since Rðx; yÞ is symmetric and bounded). Hence, its
eigenfunctions form a complete set of orthogonal functions,1 such that the displacement field
wðx; tÞ may be expressed as

wðxÞ ¼
X1
j¼1

ajjjðxÞ. (2)

In our application, the scalar field wðxÞ is the elastic displacement of a vibrating two-dimensional
structure, and it may be easily shown that the empirical eigenvalue lj represents the value of the
energy content of the mode jj.

2 It follows that, for a given n, the subspace spanned by
the jj ð j ¼ 1; . . . ; nÞ maximizes, on average, the energy content of Eq. (2), truncated to the
order n.
2.1. The KLD for undamped unforced system with constant mass per unit area

Let the KLD data set be a representation of a time-dependent displacement field of a vibrating
two-dimensional structure with constant mass per unit area (e.g., a plate or a membrane).3 The
out-of-plane displacements w over the structure domain S solve the equation of the dynamics
for the undamped and unforced system, €wþLw ¼ 0 (the constant mass per unit area is included
in L)

wðx; tÞ ¼
X1
k¼1

akðtÞfkðxÞ; x 2S, (3)

with fk solutions of Lfk ¼ mkfk and

akðtÞ ¼ ak cosðoktþ wkÞ, (4)
1Specifically, the functions solutions of the eigenproblem integral equation (Eq. (1)) are orthonormal (for details, see

Refs. [6,18]).
2A proof for a scalar field representing a turbulent velocity field is given in Ref. [19]. In that case, the empirical

eigenvalues are twice the kinetic energy of the associated empirical eigenfunction.
3The demonstration that follows is closely related to those given in Refs. [7,10,11].
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where ok ¼
ffiffiffiffiffi
mk
p

, ak 2 R, wk 2 R (determined by initial conditions). The averaged autocorrelation
function of the real field wðx; tÞ is, by definition,

Rðx; yÞ:¼
1

T

Z T

0

wðx; tÞwðy; tÞdt

¼
1

T

Z T

0

X1
i¼1

aiðtÞfiðxÞ

" # X1
k¼1

akðtÞfkðyÞ

" #
dt

¼
X1
i¼1

X1
k¼1

1

T

Z T

0

aiðtÞakðtÞdt

� �
fiðxÞfkðyÞ

¼
X1
i¼1

X1
k¼1

cikfiðxÞfkðyÞ, ð5Þ

where

cik :¼
1

T

Z T

0

aiðtÞakðtÞdt. (6)

Under the condition oiaok for iak, it may be shown (see Appendix A) that, as T !1 the
matrix C :¼ ½cik� becomes diagonal

lim
T!1

cik ¼
a2k
2

dik. (7)

Hence, for T !1, the time-averaged autocorrelation function may be written, in the diagonal
form, as

Rðx; yÞ ¼
1

2

X1
k¼1

a2
kfkðxÞfkðyÞ. (8)

This equation implies that jðxÞ ¼ fðxÞ, whereas

lj ¼
1
2

a2
j . (9)

Indeed, it is easy to verify that these are solutions of Eq. (1), with R given by Eq. (8). In addition,
Mercer’s theorem (for details, see Ref. [18]) ensures the uniqueness of the diagonal representation
of R in terms of eigenvalues and eigenfunctions of the operator LR, so that we are allowed to
state that those KLD eigenfunctions that correspond to non-zero KLD eigenvalues are
fundamental modes of vibration of the structure.
Note that Eq. (9) confirms that the eigenvalues are related to the energy content of the

corresponding modes. Thus, the above-mentioned optimality of the KLD ensures that, for a given
truncation order n, the subspace spanned by the first n eigenfunctions of the structural operator
(fundamental modes) maximizes, on average, the energy content of the signal.
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3. Elastic displacements from optical field

In this section, we briefly outline the basic optics analytical tools relevant to the understanding
of the present methodology. In this application, we consider a thin deformable plate, lying in the
xy-plane, capable of out-of-plane deformation. When a laser beam hits the object at rest, the
reflected optical field may be considered as the effects of a sources distribution Vrðx; y; zoÞ on
the object plane z ¼ zo. On the other hand, indicating with wðx; yÞ the out-of-plane displacement
due to a (static) deformation, the complex representation of the relationship between the
distribution Vrðx; y; zoÞ and that emanating from the deformed plate is

Vðx; y; zoÞ ¼ Vrðx; y; zoÞe
{kzwðx;y;tÞ, (10)

where kz is the wavenumber of the coherent light in the z-direction. For a vibrating object,
Eq. (10) becomes

V ðx; y; zo; tÞ ¼ Vrðx; y; zoÞe
{kzwðx;y;tÞ. (11)

The complete information about the two fields Vrðx; yÞ and V ðx; yÞ may be recorded on a suitable
device, such as a photographic film or a digital CCD, using a real-time holographic technique (for
details, see Refs. [14,17]). To this aim, the recording device is illuminated by two different laser
beams coming, respectively, from the object (object beam Oðx; y; z; tÞ produced by the sources
given by Eq. (10) or Eq. (11), see Fig. 1), and from a known source (reference beam Rðx; y; zÞ, see
C
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Fig. 1. Scheme of the holographic optical setup.
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again Fig. 1). The resulting optical field intensity (i.e., the quantity the recording medium is
sensible to) may be expressed by the superposition, on the holographic plane z ¼ zh, of the two
incoming beams

Ihðx; y; tÞ ¼ jRðx; y; zhÞ þOðx; y; zh; tÞj
2

¼ jRðx; y; zhÞj
2 þ jOðx; y; zh; tÞj

2

þ Rðx; y; zhÞO
�ðx; y; zh; tÞ þ R�ðx; y; zhÞOðx; y; zh; tÞ, ð12Þ

where z ¼ zh is the recording plane and � indicates the complex conjugate. To reconstruct
completely the displacement field from the recorded data, we need to know the complex optical
field. To accomplish this, it is convenient to record two different simultaneous holograms, using
two reference beams in quadrature

R0ðx; y; zhÞ ¼ A; Rp=2ðx; y; zhÞ ¼ Ae{p=2, (13)

where A is a real constant. The corresponding intensities on the holographic planes are,
respectively,

Ih0ðx; y; tÞ ¼ A2 þ jOðx; y; zh; tÞj
2 þ 2ARe½Oðx; y; zh; tÞ�, (14)

Ihp=2ðx; y; tÞ ¼ A2 þ jOðx; y; zh; tÞj
2 þ 2ARe½Oðx; y; zh; tÞe

�{p=2�

¼ A2 þ jOðx; y; zh; tÞj
2 þ 2A Im½Oðx; y; zh; tÞ�. ð15Þ

The recording of the optical filed intensity on the sensitive medium implies a time-integration over
the exposure time TE of Eqs. (14) and (15) (see e.g., Ref. [14]). In this work, TE is assumed much
smaller than the period of oscillation of the highest harmonics of the motion analyzed,4 and the
medium response is assumed proportional to the identity operator. Thus, the fields recorded are
considered proportional to the optical field intensities in Eqs. (14) and (15). Then, since A is
known and jOðx; y; zh; tÞj

2 can be easily measured, Re½Oðx; y; zhÞ� and Im½Oðx; y; zh; tÞ� may be
evaluated using the above equations.

3.1. Digital reconstruction and displacement field estimate

As shown above, we may obtain the complex optical fields Orðx; y; zhÞ and Oðx; y; zh; tÞ coming,
respectively, from the object at rest and from the vibrating object. Then we may reconstruct the
original fields on the object plane via digital simulation of laser light propagation. According to
Huygens–Fresnel principle we may write

Vrðx; y; zoÞ ¼

Z 1
�1

Z 1
�1

K�ðx� x; y� Z; zo � zhÞOrðx; Z; zhÞdxdZ, (16)

V ðx; y; zo; tÞ ¼

Z 1
�1

Z 1
�1

K�ðx� x; y� Z; zo � zhÞOðx; Z; zh; tÞdxdZ, (17)
4The possibility to satisfy such a condition in practical applications depends on a large number of parameters related

to the physical phenomenon and to the characteristics of the experimental rig (e.g., medium sensitivity, laser power,

object dimensions, etc.).
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where

Kðx; y; zÞ ¼ �
{eikr

lr
cos W, (18)

where l is wavelength of the laser light, r ¼ krk (with r ¼ xiþ yjþ zk) and W is the angle between r

and the z-axis. Once Vrðx; y; zoÞ and V ðx; y; zo; tÞ are known, wðx; y; tÞ may be evaluated through
Eq. (11).
4. Numerical results

In the present work, the formulation presented is validated through simple applications to the
evaluation of the natural modes of vibration of the structure, via the combined use of KLD and
holographic interferometry. It should be emphasized that the whole process is digitally simulated,
using an in-house developed computer program, including the holographic recording and
reconstruction. In this section, we present the results obtained under the assumption that
experimental noise is negligible (this assumption is removed in the next section).
For the sake of simplicity, and without loss of generality, we assume that the object dimensions

are small with respect to the the distance d ¼ jzh � zoj (see Fig. 1), and thus the Fresnel
approximation to the optical propagation laws is applicable (for details, see Refs. [17,20]).
Furthermore, the response of the recording media is described by the identity operator. We
concentrate our analysis on two-dimensional homogeneous structures, whose fundamental modes
are known analytically. In connection with these test cases, we examine the influence on the
solution of various parameters.
Consider first a vibrating rectangular simply supported uniform plate (with dimensions a and b,

thickness h, density R, Young modulus E and Poisson ratio n), subject to an impulsive force
applied at x ¼ ðx�; y�Þ for t ¼ 0. The solution to this problem (truncated to M �M modes) is
given by

wðx; y; tÞ ¼
XM

m;n¼1

cmn sinðomntÞfmnðx; yÞ, (19)

where omn ¼ p2
ffiffiffiffiffiffiffiffiffi
D=R

p
ðm2=a2 þ n2=b2Þ (with D ¼ Eh3=ð1� n2Þ12) is the natural frequency of the

fundamental mode of vibration fmnðx; yÞ, given by

fmnðx; yÞ ¼
2

ab
sin

mp
a

x
� �

sin
np
b

y
� �

, (20)

whereas cmn ¼ fmnðx�; y�Þ=omn.
The optical process is simulated by digitizing the optical fields with a resolution of 9mm. A mesh

of 5440� 4080 pixels is processed to obtain the object optical field on the recording plane (see
Figs. 2 and 3).5 Specifically, a truncation order M ¼ 6 was assumed, the sampling frequency of the
CCD was set to 5� 10�6 s and the recording time was T ¼ 0:5 s (100,000 time samples). [The
5The optical simulation is conducted by assuming the recording medium being a Kodak full-frame CCD image sensor

KAF-22000CE, with an array of 5440� 4080, 9mm square pixels.
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Fig. 2. Density plot of the real part of Oðx; y; zh; t̂ Þ for the rectangular simply supported plate at t̂ ¼ 0:05 s.
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effect of the recording time is related to the use of the time-averaged autocorrelation of the
displacements in the KLD technique. Specifically, it is necessary to provide to the average
operator a recording time sufficiently long, so as to have a significant number of oscillation
periods also for the lower harmonics. In other words, the number of available time samples must
be sufficiently high so as to provide a data ensemble capable of representing the dynamics of all
the harmonics.] The displacement field is calculated from the phase shift between the two optical
fields and is stored in a 40� 30 mesh to be processed using the KLD (Figs. 4–6). Fig. 7 presents
the reconstructed displacement field along the x ¼ a=2 cut of the plate; this is compared to
its analytical representation. Moreover, the Karhunen–Loève eigenvalues (KLV’s) are shown in
Fig. 8 and some of the Karhunen–Loève modes (KLM’s) are presented in Figs. 9–12. It is worth
noting that, having used M ¼ 6, only the first 36 KLV’s and KLM’s are physically meaningful
(see Eq. (19)). The remaining eigenvalues represent the noise tail (due to round-off error, in this
case) of the decomposed field and the corresponding eigenfunctions are physically meaningless.
Finally, the method used by Wolter [11] has been utilized for finding the natural frequencies
corresponding to the modes obtained. Specifically, the time-history of the displacement field has
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Fig. 3. Density plot of the imaginary part of Oðx; y; zh; tÞ for the rectangular simply supported plate at t ¼ 0:05 s.
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been projected on each KLM and the resulting signal has been Fourier transformed. The results
are presented in Fig. 13 for KLM f6;2. The peak occurs at 22,412Hz and this is considered as the
frequency provided by the method. This is in remarkable agreement with the analytical value,
which is 22,411Hz.
Next, consider a uniform cantilever plate. We consider only the bending deformation of the

plate, so that the vertical displacement corresponds to that of a cantilever beam. Thus,

wðx; y; tÞ ¼
XM
k¼1

ck sinðoktÞfkðx; yÞ, (21)

where ok ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðD=rÞ

p
Z2k, with Zk being the solutions of the characteristic equation

cos Zk cosh Zk ¼ �1, and

fkðx; yÞ ¼ Ak sin Zk

x

a

� �
� sinh Zk

x

a

� �h i
þ Bk cos Zk

x

a

� �
� cosh Zk

x

a

� �h i
, (22)

whereas ck ¼ fkðx�; y�Þ=ok.
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Fig. 4. Density plot of the real part of Vrðx; y; zo; tÞ for the rectangular simply supported plate at t ¼ 0:05 s.
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The truncation order was taken as M ¼ 10 and N ¼ 10; 000 was the number of available time
samples, with T ¼ 0:05 s. The whole analysis process was performed as above. The results are
presented in Figs. 14–22. Figs. 14–20 are similar to those for the simply supported plate and need
no further explanation. Fig. 21 presents a cross-section of Fig. 20. In addition, the figure presents
(for the same problem and still using a number of processed time samples N ¼ 10; 000), the results
obtained by using (instead of constant recording time steps that satisfy the sampling theorem)
random time steps with a mean value of 0.1 s (so that T ¼ 1000 s). In addition, the results are
compared with the analytical ones; again the agreement is very good, especially if we take into
account the high order of the mode. It should also be noted that the agreement between the
uniform-sampling and random-sampling results is also very good, indicating that it is possible to
perform the KLD analysis without satisfying Shannon’s time-sampling theorem. Obviously this
would not be acceptable if, in addition, the natural frequencies were to be required. It may be
added that, since the KLD is a statistical method, the number of time samples available (rather
than time-sampling frequency), along with the number of spatial samples, are the relevant
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Fig. 5. Density plot of the imaginary part of Vrðx; y; zo; tÞ for the rectangular simply supported plate at t ¼ 0:05 s.
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Fig. 11. 27th Karhunen–Loève mode (f3;6).
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Fig. 14. Density plot of the real part of Oðx; y; zh; tÞ for the rectangular cantilever plate at t ¼ 0:03 s.
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Fig. 15. Density plot of the imaginary part of Oðx; y; zh; tÞ for the rectangular cantilever plate at t ¼ 0:03 s.
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Fig. 16. Displacements evaluated from the optical-field phase shift at t ¼ 0:03 s.
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Fig. 18. First Karhunen–Loève mode (f1).
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parameters for modal identification. Fig. 22 shows the rms of the error made in the identification
of modal shapes. Specifically, the figure depicts the error ek ¼ ½1=2

R
ðjk � fkÞ

2 dx�1=2 as a
function of the mode number k, when a displacement field that includes 50 modes is processed
over a mesh of 40� 30 points. Since (contrary to the time sampling) the spatial sampling has to
fulfill Shannon’s theorem, the spatial resolution represents a limit for capturing high-order (and
high-frequency) modal shapes. It should be noted that, as expected, the numerical methodology
used introduces spurious solutions (due to a violation of Shannon’s sampling theorem in space).
In this case the eigensolutions have nothing to do with the analytical modes. As shown in Fig. 22,
after a certain point ek ¼ 1. This implies that the two functions jk and fk are such thatR
jkfk dx ¼ 0 (see Appendix B). Note that the transition is quite sudden.
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Fig. 19. Third Karhunen–Loève mode (f3).
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Fig. 20. Tenth Karhunen–Loève mode (f10).
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It has been shown that jkðxÞ ¼ fkðxÞ. It follows that the fundamental modes of vibration
represent the optimal basis functions in the energy content sense. It is worth noting that Eq. (21)
states that wðx; tÞ is a quasi-periodic function of time, not necessarily a periodic function. This is
important because, in general, the natural-frequency ratios are not rational.
5. Effects of experimental noise

One could argue that the results presented above are not really significant, because of the
absence of (simulated) experimental noise. Indeed, whatever test rig and instrumentation are used
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to generate and record the signal, the presence of unwanted noise is unavoidable. In real-life
applications, experimental noise is always present in the input of the Karhunen–Loève algorithm.
Hence, in this subsection, we investigate on the effects of the experimental noise on the
identification of modal shapes.
Specifically, we assume that the signal processed by the KLD is ŵðxi; tÞ ¼ wðxi; tÞ þ Zðxi; tÞ,

where Zðxi; tÞ is the generic experimental noise evaluated at x ¼ xi. In order to formulate this, it is
convenient to discuss the discretized form of the eigenproblem integral equation, (Eq. (1)). In this
work, the discretization is obtained by dividing the surface S into small elements Si, and
assuming the integrand to be constant within each element, and equal to its value at the center xi
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of the element Si (we use the symbol ci :¼jðxiÞ in order to avoid confusion with the
eigenfunctions ji). This yields X

j

r̂ijcjSj ¼ lci, (23)

where

r̂ij ¼
1

N

XN

k¼0

ŵðxi; tkÞŵðxj; tkÞ. (24)

The elements of the autocorrelation matrix R̂ :¼ ½r̂ij� may be expressed as

r̂ij ¼ rij þ pij þ pji þ qij, (25)

where

rij :¼
1

N

XN

k¼0

wðxi; tkÞwðxj; tkÞ, (26)

pij :¼
1

N

XN

k¼0

wðxi; tkÞZðxj; tkÞ, (27)

qij :¼
1

N

XN

k¼0

Zðxi; tkÞZðxj; tkÞ. (28)

It is apparent that, if wðxi; tÞ and Zðxj; tÞ are uncorrelated for all i and j, then (in the N !1 limit)
pij vanishes. If, in addition, ZðxiÞ and ZðxjÞ are uncorrelated for iaj, then (again in the N !1

limit) qij vanishes for iaj. As a result, we obtain r̂ij ¼ rij þ Z2i dij, where Z2i ¼ ð1=NÞ
P

k Z
2ðxi; tkÞ. In

the following, for the sake of simplicity, we assume that the level of noise is spacially uniform,
independently of the local level of the signal. This implies that the noise is independent of i;
therefore, ð1=NÞ

P
k Z

2ðxi; tkÞ ¼ constant ¼ Z2; 8xi. Thus,

R̂ ¼ Rþ Z2I. (29)

It is apparent that the matrices R̂ and R :¼ ½rij� have the same set of eigenvectors and, moreover,
the corresponding eigenvalues are given by

l̂k ¼ lk þ Z2. (30)

We can summarize our results by stating that, whenever Eq. (29) holds (i.e., whenever (1) the noise
and the signal are uncorrelated, (2) the noise signals at two points are uncorrelated, and (3) the
level of noise is spacially uniform), the experimental noise does not affect the modal shapes. It is
worth noting that, in actual applications, having a large number N of time samples available is
crucial for: (1) the convergence of the time-averaged autocorrelation function to the form
expressed by Eq. (8), and (2) for the convergence of the experimental noise to a contribution
expressed by Eq. (29). In other words, the data ensemble processed by the method, has to be
‘‘statistically representative’’ of the dynamic phenomenon.
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The above formulation has been applied to both simply supported and cantilever plates. For all
the numerical results obtained, a random noise with a signal-to-noise ratio6 s=n ¼ 0:1 has been
added to the KLD input (i.e., to the displacement field reconstructed from the digital holograms)
and the modal analysis have been performed as described above. The modal shapes thus obtained
coincide, within plotting accuracy, with those presented in Section 4, and therefore are not
reproduced here.
Thus, in the following we concentrate on noise-related issues, specifically on whether the

eigenvalues satisfy Eq. (30). Fig. 23 depicts l̂k � lk as a function of k, for different numbers of
available time samples N and s=n ¼ 0:1 (of course, most of the l’s equal zero, because the
corresponding modal shapes do not appear in the signal). It may be observed that, as N grows, the

curve tends to a horizontal line (as it should, since according to Eq. (30), the limit is Z2, which is
constant). It may be noted that the results, still for N ¼ 10; 000, were repeated for signal-to-noise

ratios s=n ¼ 0:01; 0:02; 0:05; 0:1: the results for l̂k � lk as a function of k are virtually identical,

except of course for a multiplicative constant equal to ðs=nÞ2 (and hence are not shown here
explicitly). Finally, Fig. 24 presents an example of the convergence of the experimental noise.

Specifically, Fig. 24 depicts kPk=kR̂k and kQk=kR̂k as a function of 1=N, where P :¼½pij þ pji�,

Q :¼½qij � qiidij� (no sum over repeated indices is implied), and kAk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðATAÞ

q
is the Frobenius

norm of the matrix A.
6. Concluding remarks

A non-invasive methodology for the evaluation of the natural modes of vibration has been
presented. Specifically, the formulation, based on a combination of the KLD technique with the
6The value of the signal is calculated as the peak value of wðx; tÞ.



ARTICLE IN PRESS

 0.001

 0.01

 0.1

 1

 1e-06  1e-05  1e-04  0.001  0.01

1/N

Fig. 24. Example of noise convergence: kQk=kR̂k (þ) and kPk=kR̂k (�).

U. Iemma et al. / Journal of Sound and Vibration 291 (2006) 107–131128
holographic analysis, is aimed at the experimental evaluation of the fundamental modes of
vibration of oscillating two-dimensional structures that have constant mass per unit area. The
elastic displacements of the structure under investigation are obtained by post-processing a
sequence of holograms of the vibrating object. The KLD is then applied to the displacement field
to extract the empirical base functions. These represent the basis that, for a given truncation order
n, retains on average the maximum energy content. The coupling of these two techniques appears
to have several interesting features, resulting in the possibility of an accurate analysis of vibrating
objects with a relatively inexpensive experimental rig. The equivalence of the KLD empirical base
functions to the eigenfunctions of the structural operator has been shown for structures that have
constant mass per unit area. The method has been preliminarily assessed by simulating the optical
process with a computer code. The dynamics of simple structures has been generated analytically
and processed with the method presented. The process simulated consists in recording (and then
digitally reconstructing) two series of a (sufficiently) large number of holograms. The
displacement field is calculated from optical field phase shift and then down-sampled to be
decomposed through the KLD. In this work, a large number of holograms has been used (100,000
in the first example presented and 10,000 in the second one). The structure has been assumed
undamped. In real acquisitions, the presence of damping limits the observation time and, thus,
some technique (e.g., excitation with a train of impulsive forces) has to be used to sustain the
vibration.
The results presented here reveal that the KLD modes are in excellent agreement with the

fundamental modes of the structure, confirming that, for distinct frequencies, jkðxÞ ¼ fkðxÞ.
Issues related to the experimental noise, always present in practical applications, have been also
addressed. Their effects have been taken into account in the simulation process, demonstrating
that the modes extracted are not influenced by noise with spacially uniform amplitude, as long as
this is uncorrelated.
Finally, a preliminary study was performed to address what happens when two frequencies

coalesce and the results are presented in Figs. 25 and 26, which depict the KLMs f1;2 and f2;1 of a
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Fig. 25. Modal identification for nearly square plates. Karhunen–Loève mode f1;2.
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Fig. 26. Modal identification for nearly square plates. Karhunen–Loève mode f2;1.
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nearly square simply supported plate for which the edge-ratio is 1.01. In this case, it is apparent
that the modal shapes are distinct and it may be shown that they are in excellent agreement with
the analytical modes. The issues related to the modal identification of structures for which oi ¼

ok (for some i; k) warrant further evaluation and will be the subject of future work. In addition,
an extension of the KLD to the analysis of three-dimensional structures with non-constant density
is currently under development.
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Appendix A. Diagonality of the matrix C

Here, we want to prove what stated by Eq. (7). The coefficients of the matrix C are by definition

cik :¼
1

T

Z T

0

aiðtÞakðtÞdt, (31)

where the product aiak is given by (see Eq. (4))

aiðtÞakðtÞ ¼
1
4

aiak½e
{ðoitþwiÞ þ e�{ðoi tþwiÞ�½e{ðoktþwkÞ þ e�{ðoktþwkÞ�dt

¼ 1
4
aiakfe

{½ðoiþokÞtþðwiþwkÞ� þ e�{½ðoiþokÞtþðwiþwkÞ�g

þ 1
4
aiakfe

{½ðoi�okÞtþðwi�wkÞ� þ e�{½ðoi�okÞtþðwi�wkÞ�g. ð32Þ

Under the condition that oiaok for iak, it is apparent that

lim
T!1

cik ¼
1
2
a2kdik. (33)
Appendix B. Root mean square of the error in modal identification

In order to evaluate the error made in the identification of modal shapes, we utilized its rms
value, defined as

ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Z
S

½fkðxÞ � jkðxÞ�
2 dx

s
, (34)

where the analytical modes and the Karhunen–Loève eigenfunctions are normalized so asZ
S

f2
ðxÞdx ¼ 1;

Z
S

j2ðxÞdx ¼ 1. (35)

Eq. (34) may be written as

ek ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
S

f2
kðxÞdxþ

Z
S

j2
kðxÞdx� 2

Z
S

fkðxÞjkðxÞdx

s
. (36)

It is apparent that if (and only if)
R
S fkjk dx ¼ 0, then ek ¼ 1 (see the equation above). Note that,

in this case, the corresponding KLM’s have no physical meaning and thus the KLD is unable to
identify the related modal shapes.
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[15] C. Wagner, S. Seebacher, W. Osten, W. Jüptner, Digital recording and numerical reconstruction of lensless Fourier

holograms in optical metrology, Applied Optics 38 (1999) 4812–4820.

[16] L. Xu, X. Peng, J. Miao, A.K. Asundi, Studies of digital microscopic holography with applications to

microstructure testing, Applied Optics 40 (2001) 5046–5051.

[17] P. Hariharan, B.F. Oreb, N. Brown, Real-time holographic interferometry: a microcomputer system for the

measurement of vector displacements, Applied Optics 22 (1983) 876–880.

[18] H. Hochstadt, Integral Equations, Wiley Classics Library, Wiley, New York, 1973.

[19] J.L. Lumley, Stochastic Tools in Turbulence, Academic Press, New York, 1970.

[20] J.H. Milgram, W. Li, Computational reconstruction of images from holograms, Applied Optics 41 (2002) 833–864.


	Digital holography and KarhunenndashLoève decomposition for the modal analysis of two-dimensional vibrating structures
	Introduction
	KarhunenndashLoève decomposition
	The KLD for undamped unforced system with constant mass per unit area

	Elastic displacements from optical field
	Digital reconstruction and displacement field estimate

	Numerical results
	Effects of experimental noise
	Concluding remarks
	Acknowledgments
	Diagonality of the matrix C
	Root mean square of the error in modal identification
	References


